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The rotationally symmetric flow of a viscous fluid in 
the presence of an infinite rotating disk 
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Computation Laboratory, University of Southampton 

(Received 28 July 1959) 

The flow produced by an infinite rotating disk when the fluid at infinity is in a 
state of solid rotation is investigated numerically. When the fluid a t  infinity is 
rotating in the same sense as the disk, physically acceptable solutions exist in all 
cases. When the fluid at infinity is rotating in the opposite sense to that of the disk, 
the only physically acceptable solutions appear to be those in which there is a 
uniform suction present acting through the disk. 

1. Introduction 
The steady flow of an incompressible viscous liquid, due to an infinite rotating 

disk, was first discussed by von K&rm&n (1921). The liquid occupies the semi- 
infinite region on one side of the disk and the motion is rotationally symmetric. 
The effect of the disk is to throw the fluid near its surface radially outwards, and 
this in turn induces an axial inflow. The main interest in this problem is that, by 
virtue of assumptions about the velocity components, the Navier-Stokes equa- 
tions reduce to a set of ordinary, non-linear differential equations in a single 
independent variable. 

These equations are, in fact, the boundary-layer equations for the problem, since 
the terms which are ordinarily omitted in boundary-layer theory vanish identi- 
cally. Numerical integration of this set of equations thus yields an exact solution 
of the Navier-Stokes equations. Von K&rm&n obtained an approximate solution 
to the problem using the integral method he invented, while Cochran (1934) 
corrected his solution and then calculated more accurate values by numerical 
integration of the equations. Bodewadt (1940) solved numerically the related 
problem of the flow produced over an infinite stationary plane in fluid which is 
rotating with uniform angular velocity at an infinite distance from the plane. 
Both these flows are particular cases of a general family of rotationally symmetric 
flows which were described qualitatively by Batchelor (1951). In  these flows the 
fluid at infinity has an arbitrary uniform angular velocity about the axis of rota- 
tion of the disk, leading to a one-parameter family of solutions. 

Stewartson (1953) has also considered this problem and has obtained approxi- 
mate solutions in certain cases, while Squire (1 953) linearized the equations for 

f Present address : Atomic Energy Establishment, Winfrith, Dorset. 
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perturbations about a state of solid rotation. A complete discussion of these and 
other related papers is to be found in a review article by Moore (1956). 

Recently Fettis (1955) has devised an iterative process to obtain approximate 
solutions for several cases in which the fluid at infinity is rotating in the same 
sense as the disk. However, when the fluid at  infinity is rotating in the opposite 
sense to that of the disk, the process diverges. It was therefore decided to investi- 
gate numerically the general set of equations, and to find out for what cases 
physically acceptable solutions exist. All the numerical integrations have been 
performed on the Pegasus digital computer at the University of Southampton. 

It should perhaps be emphasized that the present work, like the above- 
mentioned papers, refers to an infinite disk and is further based on the assumption 
of a similarity solution. Consequently, any edge effects for a disk ofJinite radius 
are automatically ignored, and in cases when the flow in the boundary layer is 
radially inwards the question of the range of validity of the similarity solution has 
still to be settled; a discussion of this point has been given by Stewartson (1957). 
When the flow in the boundary layer is radially outwards the similarity solution 
is simply the first approximation in an expansion of the dependent variables in 
powers of r .  

Section 2 introduces the notation and derives the equations. $0 3 and 4 contain 
certain asymptotic and approximate solutions. The numerical methods employed 
are discussed in 6 5,  and in 5 6 the necessary extensions are given so that suction 
through the disk may be included. The results are given in the concluding sections. 

2. The equations governing the motion 
Cylindrical polar co-ordinates ( r ,  q5, z )  are used, with the disk in the plane z = 0, 

and the fluid occupies the region z > 0. Assuming the similarity solution, with the 
dependent variables in the form 

u = rQF(fl), v = rQG([), w = (vQ)*H(<), p / p  = U Q P , ( ~ ~ ) + & K Q ~ T ~ ,  (1)  

where K is a constant and fl = z(Q/v)+, we find (see, for example, Schlichting 1955, 
p. 75) that the Navier-Stokes equations become 

P" = F z - G z + H F ' + ~ ,  ( 2 )  
G" = 2FG -+ HG', (3) 

(4) P' - H" - HH', 

2F+H' = 0, ( 5 )  

0 -  

where a dash denotes differentiation with respect to fl. Equations (2) ,  (3) and ( 5 )  
must first be solved for the three velocity components F ,  G and H ,  and then the 
pressure distribution can be found immediately since (4) integrates to give 

Po = II-2F-&H2. 

The boundary conditions which must be satisfied at the disk are 

u=O, v = r Q ,  w = O  

and, in view of the similarity assumption (l) ,  these are equivalent to 

P(0) = 0, G(0) = 1, H(O) = 0. (6) 
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At infinity, the fluid is rotating with uniform angular velocity SQ and hence 

$'(GO) = 0,  G(oo) = S. (7) 

However, these conditions are not sufficient to determine the solution uniquely, 
for the constant K in equation ( 2 )  is still arbitrary. It is also necessary to assume 
that both F' and F" vanish at infinity, and thus it follows from ( 2 )  that 

K = S2. (8) 

It will be seen, in fact, that the asymptotic solution which satisfies (7) auto- 
matically makes the velocity derivatives vanish at infinity, thus ruling out any 
possibility of a shear layer in the fluid at a great distance from the disk. Thus, the 
simplified set of Navier-Stokes equations to be solved is 

P" = P 2 - G 2 + H P ' + s 2 ,  
G" = 2FG+HG', 

2F+H" = 0, 

subject to the boundary conditions (6) and (7). 
When s > 1 it was found more convenient to use the angular velocity of the 

fluid at infinity as a reference velocity. Denoting this by w ,  and the angular 
velocity of the disk by g w ,  a dimensionless co-ordinate is defined by ( = z(w/v)&. 
The velocity components are 

u = r w S ( ( ) ,  ZI = r w 3 ( ( ) ,  w = ( v w ) * S ( ( )  

and the differential equations become 

where dashes now denote differentiation with respect to 6. The boundary condi- 
tions are 

and I F ( 0 )  = 0, 3(0) = U) X ( 0 )  = 0, 

F ( m )  = 0, q c o )  = 1. 

Since uw is the angular velocity of the disk, the range 0 < u < 1 corresponds to 
values of s greater than 1. In  particular, the value c = 0 gives the problem already 
solved by Bodewadt, and his solution shows that boundary-layer effects extend 
out to about 6 = 8. 

Various characteristics of the flow patterns can be computed, in particular the 
torque on the disk. Assuming for the present a finite radius R, and assuming the 
similarity solution is accurate over an appreciable part of the disk, we find that the 
moment is given by 

M = - 2 ~ / ~ ~ r ~ , ~ ~ ( g )  dr 
z=o 

= - nrR4(~Q)* G'(0). 

This quantity will be required subsequently in a discussion of the numerical 
solutions. 
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3. Asymptotic solutions 

asymptotic solution can easily be found. If we write 
For large values of z, the flow is very nearly uniform solid rotation, and an 

- E " = f ( C ) ,  = s+g(C), H = -c+h(C),  (16) 

where c is the component of the velocity at co in the axial direction towards the 
disk, and is a function of s, and then neglect squares and products off, g and h and 
their derivatives, equations (9), (10) and (1 1) become 

f " =  - 2  sg-cf ' 9  

g" = +2sf-q' ,  

2 f + K  = 0.  

It follows from these equations that 

and 

where 

and 

f = eAc{A COB pLg - B sin p.(;> 

g = e*c(B cos pC + A sinpg), 

= - 1 [ - c -  ( (c4 + 64s2)4 + c2)*] 
2 2 

p = -- . 

It should be noted that h is always negative, irrespective of the sign of c and the 
magnitude of s. A and B are arbitrary constants whose values will be determined 
later for various values of s by fitting the numerical solution. 

These expressions display the oscillatory nature of the flow away from the 
disk and (23) shows the dependence of the wavelength on both the axial flow and 
the angular velocity of the fluid. These solutions are the leading terms in formal 
expansions for F and Gin powers of eAc. These expansions have been calculated by 
Bodewadt up to and including terms of order e6Ac. This was necessary in his work 
because the asymptotic solution was matched with a power series solution at  
5 = 1. However, in the present work the asymptotic solution is fitted to the 
machine solution at 6 = 6, and then only as a final check on the solution. Conse- 
quently, only the first term is required. Asymptotic solutions of (12) and (13) will 
also be needed later: the derivation of these is precisely similar to the above 
results, and it is found that 

and 

where 

and 

- _  1 [ - c -  [(c4+64)'b+c214] 
1 - 2  2 

(27) 

As before, - c is the limiting value of the axial component of velocity at infinity. 



Flow in the presence of a rotating disk 621 

4. Approximate solutions 
It will be seen in the next section that, for the numerical method employed, 

estimates of the velocity derivatives at the disk are needed. One way of obtaining 
these, of course, is to use the von K&rm&n integral method, but in practice it was 
found more accurate to  linearize the equations about a state of solid rotation. 
When s or c take values close to unity, the fluid at infinity is rotating with nearly 
the same angular velocity as the disk. Writing c = 1 + 6 there are formal expan- 
sions for the functions 9, $2 and X as follows 

9 = 9,+6?F1+622F2+ ..., 
$2 = $20+sg1+62$22+ ..., 
2 = XO+6Xl+62P2+.... 

When 6 = 0, the state of solid rotation is recovered and thus 

Fo= 0, go= 1, xo= 0. (31) 

In  view of the boundary conditions for 9,$2 and 2, the boundary conditions on 
2Fn, g,, and X n  are 

\ (32) 

I 
F n ( 0 )  = 2Fn(co) = 0 
9 J O )  = gn(co) = 0 

gl(0) = 1, g1(co) = 0, 

(n = 1,2 ,3 ,  ...), 

(n = 2,3,  ...), 

( n =  1 , 2 , 3  ,... ). Xn(0) = 0 

If the above expansions are now substituted into (12) to (14) and coefficients of 
powers of 6 are equated, sets of linear differential equations are obtained for the 
functions Fn, gn, Xn. The first few solutions are found to be 

I 2F1 = e-5 sin 5, 
g1 = e-5 cos 5, 

Xl = - 1 + + - 5 ( s i n t + c o s 5 ) ;  

e-25 e-5 5 
2 -  10 10 2 
S - - - - (cos 5- 2 sin 5) - - sin f e-6, 

e-25 e-5 5 g2 = - __ + - (2  cos 5 + sin 6) - - cos (e-5, 
5 10 2 

133) 

} (34) 

3 e-25 te - f  e-f 
2 -  10 10 2 10 

P - - + - - - (cos 5 + sin 5) - - (4  cos 5-  3 sin 0 ,  

and for the third set 

7(2i+7)  (2i - 1) (i + 3) 
exp [ - (1 + 451 + ~ exp [(i - 3) 51 +=exp [- (i + 3)51 400 80 

F3 + ig3 = 
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The first approximation (33) was obtained by Squire (1953). It will be noticed 
that for large values of $, away from zeros of sin $ and cos 6, the dominant terms 
in FZ and gZ are those involving 6;  similarly, in (35) the dominant term is of 
order f 2 .  It can be shown that the dominant term in Pn + igTt is 

and thus for large values of 6, except near $ = nn and (n + 9) n, where n takes 
positive integral values 

9+ i9 z i + Gexp [ - (1 + 4G)6] {sin <+ i cos c}. (36) 

The importance of these expansions lies in the fact that they provide fairly 
accurate values of F( 0) and g’(0) which are required in the numerical integration. 
From (33), (34) and (35) 

F ( 0 )  = G+O~1G2+0*0125G3+O(G4), (37) 
g’(0) = - 8 - 0.2G2 + 0-0225G3 + O(J4), (38) 
x(03) = - G+ 0.3G2 - 0.0875G3 + O(G4). (39) 

Despite the fact that these expansions can only be expected to give reasonable 
accuracy for values of 161 which are small compared with unity, on putting 6 = - 1 
so that the disk is at rest, these give the very accurate estimates 

S ’ ( 0 )  = -0.9125, g’(0) = 0.7775, Z ( m )  = 1.3875, 

which may be compared with the final values, obtained numerically, namely 

F’ (0)  = -0.9420, g’(0) = 0.7729, X ( m )  = 1.3696. 

On the other hand, the form of equation (36) shows that trouble may be expected 
when 8 6 - 2 and this is borne out subsequently. 

A similar linearization can be carried out for equations (9) to (11); writing 
s = 1 +s ,  we find that 

a P’(0) = - B - 0.4~’ + 0 . 0 6 2 5 ~ ~  + 0(e4), (40) 

(41) 

(42) 

b = G(0)  = E + 0 . 3 ~ ~  - 0 . 0 4 7 5 ~ ~  + O(e4), 

- c = H ( m )  = E - 0 . 2 ~ ~  + 0 . 0 1 2 5 ~ ~  + O(e4).  

These are not so accurate as expressions (37), (38) and (39) but nevertheless 
provide suitable starting values for the subsequent calculations. 

5. Numerical method of solution 
The differential equations requiring numerical methods for their solution are 

those given in $ 2 ,  (9)-(11). Solutions of these equations are required which 
satisfy the boundary conditions (6) and (7). For the purposes of computation on 
Pegasus, it is necessary to ensure that all quantities are less than unity in absolute 
value, so the following substitutions are made: 

y1 = c2-4, yz = F2-a7 y - - G2-8, y4 = H2-7, y5 = PP8, y6 = G’2+. 

(43) 
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With these substitutions, the equations (9)-(11) may be rewritten as a system 
of six Jirst-order differential equations. This reduction is performed because the 
standard Pegasus subroutine may then be used to solve them. The equations in 
question are 

y; = 2-4, y; = y5 yi = y6 2c-8, y: = - yz 2a+l-y, } (44) 
y; = y; 22-4 - y; 228-8 + y4 y5 27 + s22-8, y; = y2 y3 2a+B+l-c + y4ys 27. 

The first of these is used to keep track of how far the integration has proceeded. 
The associated boundary conditions are obtained by substitution of (43) into (6) 
and (7). Thus, 

Y,(O) = 0, YZ(0) = 0, y3(0) = 2-8, y4m = 0; 

y2(co) = 0, y3(co) = s2-8. 

These six conditions are sufficient to define the problem mathematically but it 
must be remembered that, in $52 and 3, the additional restrictions that y5(co) 
and y6(co) must be zero were imposed in order to obtain physically acceptable 
solutions. 

In  the numerical work, the values of the scaling factors were chosen to be 
a = 0, p = 2, y = 6 = 3 and E = 4. These choices, which were suggested by the 
solutions given by Cochran (1934) and Bodewadt (1940), proved to be satisfactory 
for all values of the parameter s. 

Since the functions vary fairly rapidly for small values of 6 and more slowly for 
larger values, it was found convenient to use the Runge-Kutta method of 
integration as modified by Merson (1958). The modification suggested by Merson 
provides an automatic change of interval (either a decrease or an increase) when 
necessary. 

In  order to start the integration of the system (44) at 6 = 0, it is necessary to 
estimate the values of y5(0) and ys(0); these are denoted by a and b (see (40) and 
(41)). Reasonably good estimates can be made using these equations in the cases 
when s 5 -+ 1. With these values, the system was integrated from zero to 6 = 12. 
This was repeated using a + Aa, b, and a, b + Ab, as assumed values for y5(0) and 
y6(0). (Aa and Ab are small changes in a and b.) In  this way, three sets of values of 
yz( 12) and y3( 12) were obtained. These were used to evaluate 

and ~- 
aa ’ ab ’ i3a ab * 

a Y 3 W  aY2(12) a Y 2 ( w  aY3(12) 

Then, using the first-order terms in a Taylor expansion, it is possible to solve a pair 
of linear equations and to calculate 6a and 6b, which are corrections to be applied 
to the original a and b in order to make y2( 12) and y3( 12) more nearly 0 and 82-8, 
respectively. 

Such a sequence of operations is called an iteration in the sequel. The iteration 
was repeated until a and b were obtained to  an accuracy of about ten decimal 
places; in most cases this made ~ ~ ( 1 2 )  zero to an accuracy of about 10-6 and 
likewise y,(12) differed from 8.2-8 by about 

This technique worked well for s = + 0.9 and s = + 0.8, but unfortunately the 
series (40) and (41) did not produce sufficiently accurate initial values of a and b 
for s < + 0.8. (The solutions diverged before the integration reached 6 = 12.) 
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The obvious way to obtain more accurate values is to take more terms in the 
series but the algebra involved in obtaining further terms theoretically was 
prohibitive. Consequently, the coefficients of e4 and e5 in (40) and (41) were found 
numerically using the final, accurate values of a and b for the cases s = +0.9 
( = E = - 0.1) and s = + 0.8 ( = E = - 0-2). The more accurate series obtained in 
this way are 

} (45) 
P'(0) = - E - 0.4~~ + 0 . 0 6 2 5 ~ ~  - 0.01797e4+ 0.007486" + O ( 8 ) :  

G'(0) = + ~ + 0 ~ 3 ~ ~ - 0 * 0 4 7 5 ~ ~ + 0 * 0 1 6 9 9 ~ ~ - 0 * 0 0 8 9 4 ~ ~ + 0 ( ~ ~ ) .  

Such a method enabled solutions to be obtained for 5 = -+ 0.7 and + 0.6, but for 
s < + 0.6 the initial values for a and b calculated from (45) allowed the exponen- 
tially increasing part of the solution to enter before the integration had reached 
5 = 12. Further coefficients in (45) could not be obtained using the previous 
method because all the significant figures cancelled and the resulting coefficients 
were very inaccurate. 

Thus, a different approach was required for 5 < + 0.6. Von Kkm&n's solution 
was first improved by iterating with 5 = 0. Then the values of a and b so obtained 
were used to obtain an approximate solution in the case s = + 0.1. As was to be 
expected, divergence occurred for quite small values of 5 (of the order of 4). So the 
boundary conditions y2(m) = 0 and y3(co) = 52-8 were satisfied at g = 3 by 
iterating as before. The revised values of a and b so obtained enabled the integra- 
tion to be extended to 5 = 4 before divergence set in. In  this way, iteration was 
applied at 6 = 4 to make y2(4) = 0 and y3(4) = 52-8. This process was repeated 
until 5 = 12 was reached. At this stage, the changes in a and b from 6 = 11 to 
C = 12 were 0(10-9) and the calculation was stopped. This method was applied 
successfully for s = + 0.1 to + 0.5 so covering the range 0 < 5 < + 1-0. 

The ranges > + 1 was treated by considering the equations (12)-( 15) written in 
terms of (T = l/5. Obviously the original programme needed only trivial modifica- 
tion to do this. To obtain starting values for this set of equations, the series 
expansions (37) and (38) in terms of 6 ( = (T - 1) proved accurate enough to obtain 
solutions throughout the range 0 -= (T < + 1 but two more terms of the series were 
calculated numerically as before. The results are : 

} (46) 
F ( 0 )  = +~+0~162+0~012563-0*0126364-0~0044665+0(66), 

3"(0) = -C?-O~2S2+O~0225~3+O*O038064-O*O011565+O(6~). 

So far in this section, attention has been confined to positive values of s and Q. 

In  order to obtain solutions for - 1 < 5 < 0 the aame technique as that used for 
small positive 5 was employed. The values of a and b for s = 0 were used as initial 
estimates for 5 = -0.05. This appeared to work satisfactorily for s = -0-05, 
- 0.10 and s = - 0.15, but for s = - 0.2 the values of P'( 12) and G'( 12) were very 
different from zero. Thus, this solution (for s = -0.2) was unacceptable on 
physical gr0unds.t. It was apparent that something peculiar was happening even 

t The authors have been informed that in an unpublished investigation A. C. Browning 
found that the solution with s = -0.2 is unacceptable on physical grounds. Browning 
also considered other values of 8 or v and his solution for u = 0 is reproduced in 
Schlichting (1955). Our results for this case agree better with those of Bodewadt (1940) 
than with those of Browning. 
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before the solution was printed out, because in going from the iteration at 6 = 11 
to that at 6 = 12 the changes in a and b were not small. 

Despite the fact that this solution was unsatisfactory on physical grounds, the 
method was continued to s = - 1.0 at which stage the values of a and b were very 
small, 0(10-4), but F’( l2)  and G’(l2) were O(1). Thus the region of large 
gradients, or boundary layer, seems to have moved away from the disk and large 
shears are appearing within the body of the fluid at the end of the integration 
range, where there is no solid boundary. 

The solutions obtained for s = - 0.05, - 0.1 and - 0.15 appear satisfactory at  
first sight (that is, F(12) and G(12) are U(10-4)), but  on closer examination they 
display several peculiar features. In  the first place, it  is shown in $2 that the 
torque on the disk is proportional to IG’(0)l = Ibl. When s = 0, Ibl = 0.615922 
and when s =- 0 the value of lb( is less than 0.615922, which is to be expected on 
physical grounds. Now it is also to be expected that I b I will increase as s becomes 
negative, since the disk is being rotated in the opposite sense to that of the fluid a t  
infinity. It appears from the numerical solution that Ibl in fact decreases as 
s becomes negative; for example, when s = -0.05, 161 = 0.615676, and when 
s = -0.1, Ibl = 0.608253. The velocity components for these cases also attain 
their free-stream values a t  considerably greater distances from the disk than in 
the cases when s is positive or zero. It may be that the situation would be clarified 
if the range of integration was extended; on the other hand, the changes in a and b 
in going from the iteration at 6 = 11 to that at 6 = 12 were small. An alternative 
boundary condition at  infinity is to postulate that the velocity derivatives vanish 
there, but in this case the constant K in equation (2 )  is no longer known, and 
problems concerning the uniqueness of the solution then arise. The flow between 
two rotating disks is being currently investigated and it is hoped that this will 
throw further light on the problem. 

It should perhaps be emphasized that great care was taken to ensure that a 
physically sensible solution had not been missed. For example, the value of b 
which was guessed in %he case s = -0.05, was originally taken to be more 
negative than - 0.615676, but the ‘solution’ converged to the original one in all 
cases. 

6. The problem with suction 
Stuart (1954) has solved a similar problem with s = 0 and suction applied at 

the disk. As was to be expected, suction stabilizes the flow; that is, it reduces the 
magnitude of the radial and angular velocity components. The question thus 
naturally arises as to whether the application of suction to the disk when s is 
negative, might prevent the boundary layer moving off the disk. Suction through 
the disk can be applied, in the present notation, by making y4(0) negative instead 
of zero. Following the notation of Stuart, a suction parameter a* can be intro- - 
duced such that 

H ( 0 )  = -a*. (47) 

The equations governing the motion are, as before, (9)-(11), but the boundary 
conditions are (6) modified by (47) and (7). 

40 Fluid Mech. 7 



626 M .  H .  Rogers and G. N .  Lance 

The value s = - 1 was chosen as a reasonably typical one and various values 
of the suction parameter a* were tried. It was found that the values 1.5, 1 and 
0-8 all gave physically acceptable solutions and quite clearly larger values of a*, 
corresponding to a stronger suction, would also be satisfactory. However, for 
a* = 0.4 no acceptable solution could be found: as before, the iterative process 
led to a solution for which the boundary layer is no longer attached to the disk, 
but appeared at the other end of the range of integration. In  order to obtain a 
qualitative picture of the situation, the von KBrmBn integral method was 
employed in the following way. Equations (9) and (10) were integrated from 
6 = 0 to g = 6, subject to the boundary conditions 

(48) I F(O) = 0, 

F(6) = 0, 

P’(6) = 0, 

G(0)  = 1, 

G(6) = S, 

G’(6) = 0. 

On making use of equation (1 l ) ,  it follows that 

-F’(O) = ( 3 F 2 - G 2 ) d c + ~ 2 6  s,” 
- G’( 0) = 4 s,” FG dg - 2s s,” F dc + a,* 

A quartic polynomial was assumed for P and a cubic for G, and on putting s = - 1 , 
equations (49) and (50) reduce to 

-a  19a2 39 
- 

6 2  210 +%’ 

_ -  62 - -+s, 3 13a a* 

70 
where tc = JP’(0). 

These equations give imaginary values of a if a* < 0.257, but real solutions for 
all values of the suction parameter greater than this. For very large values of a*, 
(51) and (52) show that 

(53) 
117 

F’(0) 2: -__ 
70a* ’ G’(0) _N --a*, 

and these are in qualitative agreement with the values obtained by expanding 
F and G in inverse powers of the suction parameter, as was done by Stuart for 
the case s = 0; the derivatives are 

p’(0) = (54) 

7. Results 
Many results have already been mentioned in $65 and 6, but some graphs and 

tables are presented here to emphasize the more important points. Figures 1-4 
show the radial and transverse velocity profiles for different values of s and g. 
The velocity derivatives at  the disk are given in Tables 1 and 2 for the indicated 
values of s and c, respectively. The constants describing the flow at a great 
distance from the disk are presented in Tables 3 and 4. These include the axial 
velocity of the fluid, the damping factors h and A, defined in equations (22) and 
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(26), the wave-numbers p and p1 defined in (23) and (27), and the constants A,  
B, d and g. It will be noticed that the values for A ,  B and c for 8 = 0 differ 
slightly from those obtained by Cochran. 

An example of a flow in which suction at the disk is occurring and the fluid at  
infinity is rotating in the opposite direction to the disk has been computed; 

I * 
0.10 0.20 F ( 5 )  

Radial velocity profiles 0 < s < 1 

FIGURE 1. The function F defined in equation ( l ) ,  0 < s < 1. The value of s is indicated 
in the figure. The radial velocity of the fluid is rQF. 

S 

0.0 
0.1 
0.2 
0.4 
0.6 
0.8 
0.9 
1.0 

F’(0) = a 

+ 0.510233 
+ 0.513397 
+ 0.501870 
+ 0-439580 
+ 0.331470 
+ 0.183469 
+ 0.095936 
+ 0.0 

Q(0) = b 
- 0.615922 
- 0.601554 
- 0.572080 
- 0.478673 
- 0.348434 
-0.187591 
- 0.096951 
- 0.0 

TABLE 1. Values of the velocity derivatives B”(0) and ct‘(0) for various values of 8. 

40-2 
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complete numerical solutions for this case, and for the cases s = 0.6 and 
v = 0-8 without suction, are being held at the Editor's office for consultation by 
interested people. 

8. Conclusions 
When the uniform rotation of the fluid at infinity is in the same sense aa that of 

the disk, a physically acceptable solution exists for each value of s. In  every case 
there is a boundary layer attached to the disk and in all cases, except one, the 
motion approaches the uniform rotation at  infinity in an oscillatory fashion. The 

0 0 5  I .o G(Z) 
Transverse velocity profiles 0 < 8 < 1 

FIGURE 2. The function B defined in equation (1) ; the zonal velocity of the fluid is rRG. 
These are all cases when the angular velocity of the disk is greater than that of the fluid at 
infinity. 

0- 

0.0 
0- 1 
0.2 
0.4 
0.6 
0.8 
0.9 
1.0 

F ( 0 )  
- 0.941971 
- 0.844923 
- 0.751682 
- 0.569080 
- 0.385194 
- 0.196121 
- 0.099014 
- 0.0 

S'(0) 
+ 0.772886 
+ 0.718393 
+ 0.658418 
+ 0.522477 
+ 0.366431 
+ 0.191812 
+ 0.097977 
f 0.0 

TABLE 2. Values of the velocity derivatives P ' (0 )  and B'(0) for various values of B 
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exception to this is the flow (for which s = 0) originally discussed by von K&rm$n 
in which the fluid at infinity is not rotating but moving in a purely axial direction. 
One unexpected feature of the solution is that the axial velocity at infinity for 

Radial velocity profiles 0 < CT < 1 

FIGURE 3. The function ,F defhed in equation (12); the radial velocity of the fluid is 
r u g ,  and the appropriate values of u are indicated on the figure. 

8 c = -H(oo) 

0.0 0.88446 
0- 1 0.91769 
0.2 0.86175 
0-4 0.65996 
0.6 0.43077 
0.8 0-20801 
0.9 0*10201 
1.0 0.0 

- A  
0.88446 
0.95931 
0.99062 
1.00683 
1*00510 
1.00 146 
1.00037 
1.0 

-P 
0.0 
0.19981 
0-35730 
0.59097 
0.75977 
0.89141 
0.94800 
1.0 

A 
+ 0.91772 
+ 0.48981 
+ 0.19045 
+ 0.01320 - 0.00993 - 0.00332 - 0.00261 - 0.0 

B 
+ 1.20211 
+ 1.32529 
+ 1.20306 
+ 0.75996 
+0.45192 
+ 0.21003 
+ 0.10431 
+ 0.0 

TABLE 3. The flow at a great distance from the disk: these are the constants in (20) 
and (21) which give the approximate velocity distribution for large values of 5. 
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8 = 0.1 is stronger than the corresponding value for s = 0. The maximum value of 
the radial velocity is also greater in this ca0e. This feature is also displayed by the 
approximate results of Fettis. In the range 0.2 < s < 1, the flow relative to the 
disk gets progressively weaker as s increases to unity. No such anomalous 

6 

11 

10 

9 

Transverse velocity profiles 0 < cr < 1 

FIGURE 4. The function 9 defined in equation (12). 

0- 

0.0 
0.1 
0.2 
0.4 
0.6 
0.8 
0.9 
1.0 

- c  = X(m) 
1.38961 
1.19516 
1.03080 
0.72608 
0.45378 
0.21272 
0-10309 
0.0 

- A1 
0.43841 
0.49529 
0.55306 
0.67043 
0.78606 
0.89647 
0.94912 
1.0 

- Pl 
0.89031 
0.91502 
0.93593 
0.96761 
0.98721 
0-99718 
0.99934 
1.0 

-d 
0.23543 
0.18303 
0.13694 
0.06787 
0.02698 
0.0 0 7 4 9 
0.00128 
0.0 

-9 
1.02911 
0.88037 
0.75559 
0-55281 
0.37316 
0.19283 
0.09882 
0.0 

TABLE 4. The flow at a great distance from the disk: these are the constants in (24) 
and (25) which give the approximate velocity distribution for large values of 6. 



Flow in the presence of a rotating disk 631 

behaviour is found in the range 1 2 CT 2 0 and this may have some bearing on the 
fact that the expansions in powers of 6 (equations (28)-(30)) are rather more 
accurate than the corresponding expansions in powers of E .  In  any case, the 
linearization technique is shown to give an accurate picture of the flow for quite 
a wide range of values of the expansion parameters 6 and E .  

When the fluid a t  infinity is rotating in the opposite sense to that of the disk, 
and s < - 0.2, then it appears that no steady solution is possible unless there is 
suction acting, which prevents the boundary layer from leaving the disk and 
attaching itself to the ' disturbing agency ' at infinity. For each value of s in this 
range there is probably a critical value of the suction parameter a*, giving the 
minimum amount of suction needed to keep the boundary layer on the disk. All 
that can be said is that for the case s = - 1, this critical value lies in the range 
0.8 > a* > 0.4. 

The situation as regards values of s in the range 0 > s > -0.2 is not clear: 
solutions of the equations satisfying the postulated boundary conditions appear 
to exist, but they give anomalous values for the torque on the disk. 

The authors would like to express their gratitude to Prof. Howarth for several 
helpful discussions. 

R E F E R E N C E S  

BATCHELOR, G. K. 1951 Quart. J .  Mech. Appl. Math. 4, 29. 
BODEWADT, U. T. 1940 2. angew. Math. Mech. 20, 241. 
COCHRAN, W. G. 1934 Proc. Carnb. Phil. SOC. 30, 365. 
FETTIS, H. E. 1955 On the integration of a class of differential equations occurring in 

boundary layer and other hydrodynamic problems. Proc. 4th Midwest Conf. on Fluid 
Mech. 

VONKARMAN, T. 1921 2. angew. Math. Mech. 1, 244. 
MERSON, R .  H. 1958 On some developments in the study of processes for solving ordinary 

MOORE, F .  K. 1956 Article in Advances in Applied Mechanics, p. 159. Academic Press. 
SCHLICHTING, H. 1955 Boundary Layer Theory. Pergamon Press. 
SQUIRE, H. B. 1953 A.R.C. 16,021. 
STEWARTSON, K. 1953 Proc. Carnb. Phil. SOC. 49, 333. 
STEWARTSON, K. 1957 Boundary Layer Research. University of Freiburg. 
STUART, J. T. 1954 Quart. J .  Mech. Appl. Math. 7, 446. 

differential equations. (Unpublished.) 


